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Abstract— The presence of cloud layers severely compro-
mises the quality and effectiveness of optical remote sensing
(RS) images. However, existing deep-learning (DL)-based cloud
removal (CR) techniques, which usually take the fidelity-driven
losses as constraints, e.g., L1 or L2 losses, tend to generate smooth
results, often failing to reconstruct visually pleasing results and
cause semantic loss. To tackle this challenge, this work pro-
poses to encompass enhancements at the data and methodology
fronts. On the data side, an ultra-resolution benchmark named
CUHK cloud removal (CUHK-CR) of 0.5 m spatial resolution is
established. This benchmark incorporates rich detailed textures
and diverse cloud coverage, serving as a robust foundation
for designing and assessing CR models. From the methodology
perspective, a novel diffusion-based framework for CR named
diffusion enhancement (DE) is introduced. This framework aims
to gradually recover texture details, leveraging a reference
visual prior providing foundational structure of the images to
enhance inference accuracy. Additionally, a weight allocation
(WA) network is developed to dynamically adjust the weights
for feature fusion, thereby further improving performance, par-
ticularly in the context of ultra-resolution image generation.
Furthermore, a coarse-to-fine training strategy is applied to
effectively expedite training convergence while reducing the com-
putational complexity required to handle ultra-resolution images.
Extensive experiments on the newly established CUHK-CR and
existing datasets such as RICE confirm that the proposed DE
framework outperforms existing DL-based methods in terms of
both perceptual quality and signal fidelity.
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I. INTRODUCTION

REMOTE sensing (RS) images play a crucial role in a
variety of applications, including change detection [1],

semantic segmentation [2], and object detection [3]. However,
the imaging capabilities of satellite sensors, characterized
by their ultralong-range nature, make them susceptible to
degradation, resulting in quality distortions in the captured
images. One significant factor contributing to such degradation
is the presence of cloud cover. Clouds significantly reduce
visibility and saturation in the images, undermining the effec-
tiveness of RS images, especially in the optical domain. This
cloud-induced degradation hampers the clarity and detail of the
images, impacting their practical utility. Consequently, there
is a pressing need for the development of restoration meth-
ods aimed at enhancing land surface information obscured
by cloud layers, thereby improving the effectiveness of RS
images.

Traditional methods for cloud removal (CR) can be broadly
categorized into two main groups, namely multispectral and
multitemporal techniques. More specifically, multispectral
methods [4], [5], [6], [7] primarily rely on variations in
wavelength-dependent absorption and reflection to recover
obscured landscapes caused by haze and thin cirrus clouds.
However, in scenarios involving thick and filmy clouds that
entirely obstruct optical signals, the efficacy of multispectral
methods may be compromised due to the absence of supple-
mentary information. In contrast, multitemporal methods [8],
[9] integrate clear sky conditions from reference images cap-
tured at different time instances. While the results derived
from the multitemporal methods are more reliable in general
as they stem from actual cloud-free observations, the rapid
changes in the landscape significantly impact the accuracy of
the reconstructed images.

In recent years, deep-learning (DL)-based methods have
gained significant popularity for their extraordinary abil-
ity to generate high-quality, cloud-removed results. These
approaches within the realm of DL can be further catego-
rized into CNN-based models [10], generative adversarial
network (GAN)-based models [11], [12], and diffusion-based
models [13]. More specifically, CNN-based models operate
by inputting cloudy images into a network and updating
parameters based on loss functions calculated from the output
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and the corresponding cloud-free image. Along the same
direction, Meraner et al. [14] introduced a deep residual
neural network designed to reconstruct an optical represen-
tation of the underlying land surface structure. Notably, SAR
imagery was incorporated into the CR process to offer addi-
tional information on surface characteristics beneath clouds.
Additionally, Ma et al. [15] utilized a two-step convolution
network to extract transparency information from clouds and
determine their positions. However, the feature representation
capability of CNN-based models is limited, resulting in less
precise prediction of detailed texture information. Since clouds
often obscure a substantial portion of an image, the inferior
prediction of detailed texture within cloudy regions directly
contributes to the diminished perceptual quality of the gener-
ated cloud-removed images.

To address this limitation, GAN-based models employ
unique training strategies to enhance the model’s capability for
detailed prediction, which incorporate two key components,
namely the generator and the discriminator. The generator cre-
ates cloud-removed images, while the discriminator evaluates
whether the generated images meet desired quality standards,
providing gradients for updating the generator’s parameters
through an additional GAN loss function. For instance, Cloud-
GAN [12] preserved color composition and texture by learning
a bidirectional mapping of feature representation between
cloudy images and their corresponding cloud-free counterparts
in a cyclic structure. Nevertheless, GAN-based models face
persistent challenges such as model collapse, unstable training
dynamics, and vanishing gradients, all of which detrimen-
tally impact their performance across various applications.
Moreover, GAN-based models for CR continue to depend on
pixel-level loss functions to some extent, limiting their ability
to accurately predict intricate textures.

Recently, a novel branch of generative models, known
as diffusion models [16], has been introduced to computer
vision tasks. These models have demonstrated remarkable
performance in generating detailed textures across various
low-level tasks compared with the GAN-based models, includ-
ing super-resolution [17], [18], [19], deblurring [20], [21], and
inpainting [22]. Optimal integration of the gradual learning
and refinement features of diffusion models into the generation
process is expected to pave the way for more advanced and
effective approaches in CR. The diffusion model aims to
learn the data distribution of the cloud-free image under the
condition of the cloudy image instead of learning the change
from cloudy image to cloud-free image, which improves its
flexibility in detailed texture generation. In comparison with
GAN-based models, the diffusion model demonstrates a more
remarkable capability in predicting detailed information due
to its specific training strategy. However, it is noteworthy
that the outcomes obtained from pure diffusion models for
CR are often inaccurate with undesirable fake textures and
misalignment. Consequently, the current applications of diffu-
sion models in CR primarily focus on feature extraction [13],
limiting their inherent capabilities for gradual learning and
refinement in this context.

In this study, based on the diffusion architecture, we propose
a novel network named diffusion enhancement (DE) for CR,

aiming to leverage the inherent strengths of the diffusion
model to improve the quality of images. In sharp contrast to
existing diffusion-based methods that only rely on progressive
refinement for reconstructing fine-grained texture details, this
work proposes to integrate a reference visual prior. In this
way, the global visual information from reference visual prior
can be effectively integrated into the progressive diffusion
process to mitigate the training difficulty, which results in
improved inference accuracy. Besides, a weight allocation
(WA) network is introduced to optimize the dynamic fusion of
the reference visual prior and intermediate denoising images
derived from the diffusion models. To expedite the diffusion
model convergence, we further propose a coarse-to-fine train-
ing strategy. More specifically, the network is first trained on
smaller patches before being fine-tuned using larger patches.
Finally, taking advantage of recent satellite observations of
high quality and resolution [23], [24], [25], an ultra-resolution
benchmark containing clear spatial texture information of the
location and intrinsic features of the landscape is established
for CR algorithm design and performance evaluation.

In summary, the main contributions of this work are sum-
marized as follows.

1) A novel network called DE is proposed in this work
to restore land surface under cloud cover. The proposed
DE network, which merges global visual information
with progressive diffusion recovery, offers an enhanced
capability of capturing data distribution. As a result,
it excels in predicting detailed information by utilizing
reference visual prior during the inference process.

2) A WA network is devised to compute adaptive weighting
coefficients for the fusion of the reference visual prior
and intermediate denoising images derived from the
diffusion models. As a result, the reference visual prior
refinement predominantly contributes to coarse-grained
content reconstruction in the initial steps, while the
diffusion model focuses its efforts on incorporating rich
details in the subsequent stages. In addition, a coarse-to-
fine training strategy is applied to stabilize the training
while accelerating the convergence speed of DE.

3) Finally, an ultra-resolution benchmark called CUHK-CR
is established to evaluate the CR methods against dif-
ferent types of cloud coverage. Our benchmark consists
of 668 images of thin clouds and 559 images of thick
clouds with multispectral information. To the best of our
knowledge, our benchmark stands for the CR dataset
of the highest spatial resolution, i.e., 0.5 m, among
all existing CR datasets. The data and code can be
downloaded from GitHub.1

The remainder of this article is structured as follows: an
overview of existing CR datasets and methods is first presented
in Section II before Section III outlines in detail our dataset
CUHK-CR. After that, Section IV introduces the proposed
DE network whereas experimental findings and insights are
deliberated in Section V. Finally, concluding remarks are
offered in Section VI.

1https://github.com/littlebeen/Diffusion-Enhancement-for-CR
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TABLE I
COMPARISON BETWEEN EXISTING CR DATASETS AND CUHK-CR

II. RELATED WORK

A. Conventional End-to-End Method for CR

End-to-end CR models including CNN-based models and
GAN-based models are specifically designed to take a cloudy
image as input and directly generate a cloud-removed image
during the inference process. These models excel in swiftly
producing inference results, primarily focusing on discerning
the differences between the cloudy image and its corre-
sponding cloud-free counterpart. CVAE [10] delved into the
image degradation process using a probabilistic graphical
model, whereas SpAGAN [30] emulated the human visual
mechanism by employing a local-to-global spatial attention
approach to detect and highlight cloud regions. Furthermore,
AMGAN-CR [31] removed clouds using an attentive residual
network guided by an attention map. Despite their merits,
the visual outcomes of these end-to-end models consistently
replace clouds with neighboring colors, lacking the capability
to predict the underlying texture obscured by clouds. This
limitation adversely impacts the effectiveness of these CR
methods, particularly in cases of dense cloud coverage.

B. Diffusion Architecture and Prior Guidance

Recently, the diffusion model [16], [32], [33] has gar-
nered significant attention with the improved capability on
high-resolution image generation. This model gradually gen-
erates the ultimate result, denoted as x0, from a latent variable
xT , where T represents the total number of diffusion steps in a
parameterized Markov chain. The diffusion model comprises
two key components, namely the forward process and the
reverse process. More specifically, the forward process trans-
forms the data distribution into a latent variable distribution
through a step-by-step progression, leveraging the parameters
of the Markov chain. Conversely, the reverse process aims to
revert the latent variable distribution back to the original data
distribution, recovering the initial data and providing a com-
prehensive understanding of the underlying data distribution.

In contrast to previously discussed end-to-end methods, the
diffusion model [34], [35] offers a higher level of detailed
information, beneficial for restoring the landscape under cloud
coverage. However, the conventional diffusion model tends
to generate unreliable fake textures and misalignment, since
it endeavors to provide more detailed texture information
using the restricted data available from cloudy images. In the
absence of effective solutions to this issue, current diffusion
model-based methods like DDPM-CR [13] primarily employ
the diffusion model as a feature extractor, which overlooks the

TABLE II
JILIN-1KF01B SENSOR BANDS

potential to leverage the diffusion model’s inherent strengths
in gradual learning and refinement. Alternatively, some pio-
neering attempts [36], [37] have been made to incorporate
prior guidance to guide and regularize the generated results.
Aiming to fully exploit the potential of the diffusion model
for incremental learning and iterative refinement, while simul-
taneously minimizing the generation of spurious textures, our
DE is crafted to leverage the diffusion process in conjunction
with a reference visual prior.

C. Datasets for CR

Table I lists several of the most representative existing image
datasets for optical-based CR. As shown in Table I, all the
datasets share a common drawback, i.e., their low spatial
resolution of around 10–30 m. This limitation significantly
compromises the level of spatial detail they can provide.
Furthermore, despite the fact that multispectral information
is necessary for satellite image analysis, datasets such as
T-Cloud [10] and RICE [26] only contain RGB bands. In addi-
tion, it is advantageous to minimize the “acquired time gap”
as significant landscape changes can occur between the time
instances of taking the cloudy image and its corresponding
clear image. However, popular datasets like WHU Cloud
Dataset [29] possess a large “acquired time gap,” which can
be an issue of concern in practice. Finally, all datasets listed
in Table I were generated with open-source satellites such as
Landsat 8 and Sentinel-2. It is highly desirable to have datasets
from more satellites with different sensor characteristics for
CR algorithm design and performance assessment.

III. PROPOSED CUHK-CR DATASET

A. CUHK-CR

Driven by the ever-increasing resolution of RS imagery,
we have established a new ultra-resolution benchmark named
CUHK cloud removal (CUHK-CR). This benchmark is char-
acterized by its ultra-high spatial resolution of 0.5 m and
four multispectral bands with data acquisition confined to
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TABLE III
SUMMARY OF THE STUDY SITES OF CUHK-CR

a period of 17 days. Such an ultra-high spatial resolution
benchmark can facilitate the training and evaluation of various
CR methods specifically designed for ultra-resolution images.
As a result, the benchmark can mitigate the gap between the
low-resolution images during training and the high-resolution
acquired in the real world, which is shown particularly critical
for good CR performance in Section V. Furthermore, the
benchmark comprises two subsets, a thin cloud subset, namely
CUHK-CR1, and a thick cloud subset, namely CUHK-CR2,
facilitating training and evaluation on varying cloud coverage.
More specifically, the thin cloud subset includes 668 images,
while the thick cloud subset includes 559 images. These
images are cropped into smaller segments for convenience
and directly compatible with DL models. Unless specified
otherwise, a training-to-testing set ratio of 8 : 2 is employed in
the sequel, resulting in 534 and 448 images for training, and
134 and 111 images for testing in the thin and thick subsets,
respectively. Finally, it is worth pointing out that our dataset is
based on a new commercial satellite, Jilin-1, instead of those
frequently utilized satellites like Landsat 8 and Sentinel-2. The
distinct image contexts provided by the Jilin-1 satellite sensors
contribute to the uniqueness of our dataset.

B. Data Collection

Jilin-1 satellite constellation is the core project of Chang
Guang Satellite Technology Company Ltd. (CGSTL). The
constellation is composed of 138 high-performance optical RS
satellites, covering high resolution, large width, video, and
multispectrum information. Our dataset was collected by a
satellite named Jilin-1KF01B equipped with a 0.5 m resolution
push broom camera. Launched in 2021, Jilin-1KF01B incor-
porates advanced technology to acquire more than 2 million
km2 of high-definition images every day with a width greater
than 150 km. As shown in Table II, the push broom camera
covers four spectral bands, namely red (R), green (G), blue
(B), and near-infrared, as well as a high-resolution panchro-
matic color band. Pen-sharpening using the complementary
information from the multispectral and panchromatic images
is applied to improve the spatial resolution of the spectral
bands from 2 to 0.5 m. Following data processing, we obtain
high-resolution satellite images with four bands: blue, green,
red, and near-infrared. These images are fed into the model to
generate cloud-removed images of the same size. The optical
RGB bands can reflect the color characteristics of land surface
in line with human perception. In addition to the optical bands,
the near-infrared band encounters fewer disturbances from
thin clouds, thereby enhancing the extraction of precise cloud
distortion layers and enabling a more accurate reconstruction
of the background signal for visible bands. As a result, the
multispectral data [27] enhances CR by the supplementary

Fig. 1. Distribution of images on different CCPs of CUHK-CR1 training
and test datasets computed via the detector of Cloud-Net [38]. The average
probability of cloud coverage is 50.7%.

Fig. 2. Distribution of images on different CCPs of CUHK-CR2 training
and test datasets computed via the detector of Cloud-Net [38]. The average
probability of cloud coverage is 42.5%.

assistance from the near-infrared band. Table III refers to
the location, size, coverage, and acquired time of the cloudy
images and their corresponding cloud-free images. The loca-
tion of the satellite images is chosen from the north to the
south of China while the gap in acquisition time is limited to
17 days.

C. Data Analysis

To analyze the cloud coverage statistics in the CUHK-CR
dataset, we calculate the widely used cloud coverage prob-
ability (CCP) [28] on two distinct sets. We visualize the
distribution of image counts for different CCP values in Figs. 1
and 2.

For each optical image, the Cloud-Net detector [38], [39]
is applied to produce binary masks with pixelwise values of
either 0 or 1 with 0 and 1 indicating the cloudy and cloud-free
places, respectively. It is important to note that the detector
fails to differentiate between thin and thick cloud layers.
It simply detects the presence of cloud cover at the pixel level.
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Fig. 3. Architecture of our DE for CR. (a) Diffusion branch performs the diffusion step that removes noise progressively, which is capable of restoring
fine-grained textures. (b) Weighting branch performs the dynamic fusion of results from both the reference and diffusion branches with the result x0,t , capturing
the merits of both excellent global estimations and fine details. (c) Reference branch generates a cloud-removed image based on the cloudy image y, offering
substantial global context. Ultimately, x0,t and xt are utilized in the generation of xt−1.

Thin clouds typically extend over a broader area, whereas
thick clouds occupy a smaller portion of the image, including
richer reference information used for predicting background
ground. We remove those images whose landscapes are totally
obscured by the dense clouds through visual observation. As a
result, the average CCP for the set with thin clouds is higher
than that for the set with thick clouds. Notably, the images with
CCP between 0 and 0.1 account for the largest proportion in
the CUHK-CR2.

IV. DE FOR CR

A. Architecture

Similar to the denoising diffusion probabilistic model [16],
the proposed DE network proceeds in the following two
processes.

1) Forward Process: It transforms the initial data dis-
tribution q(x0) into a latent variable distribution q(xT ),
where T represents the total number of the time steps. This
transformation follows a fixed Markov chain that can be
modeled as:

q(xt |xt−1) = N (xt ;
√

1 − βt xt−1, βt I) (1)

where N , {β1, . . . , βT } ∈ (1, 0), and I stands for the Gaussian
distribution, a set of hyperparameters and the identity matrix,
respectively.

By exploiting (1), we have

q(x1, . . . , xT |x0) =

T∏
t=1

q(xt |xt−1). (2)

As a result, the forward process can be represented as

q(xt |x0) = N (xt ;

√
ᾱt x0, (1 − ᾱt )I) (3)

where αt = 1 − βt and ᾱt =
∏t

s=1 αs .
Subsequently, we can express xt as

xt =

√
ᾱt x0 +

√
1 − ᾱtϵ (4)

where ϵ ∼ N (0, I) is a standard Gaussian noise.

2) Reverse Process: It transforms the latent variable distri-
bution pθ (xT ) back to the data distribution pθ (x0) through a
network parameterized by θ . The reverse process is defined
as a Markov chain with learned Gaussian transitions starting
with a Gaussian distribution

pθ (x0, . . . , xT −1|xT ) =

T∏
t=1

pθ (xt−1|xt ) (5)

where

pθ (xt−1|xt ) = N (xt−1; µθ (xt , t), σθ (xt , t)2 I) (6)

with µθ (xt , t) and σθ (xt , t) being the mean and variance of
the Gaussian distribution at the t-th step.

During the training process, we propose to minimize the
mean square error (MSE) loss between the random noise ϵ

added to the clean image and the predicted noise ϵ̂θ (xt , t, y)

derived from xt , t and cloudy image y. Since the DE network
predicts the noise information based on the cloudy images,
it is named conditional noise predictor (CNP). In summary,
the loss function employed takes the following form:

LDDPM = Ext ,ϵ,t,y

[
||ϵ − ϵ̂θ (xt , t, y)||

2
]
. (7)

B. Reference Visual Prior Integration

Inspired by Fei et al. [36] and Zhou et al. [37], the proposed
DE network incorporates reference visual priors, comprising
a weighting branch and a reference branch, to direct the infer-
ence process toward obtaining refined outcomes, as illustrated
in Fig. 3. The reference visual prior is intended to offer the
global image structure, thereby diminishing the production of
unwanted fake textures generated by the pure diffusion model.
We outline the implementation process and motivation behind
our DE approach.

For the t-th step of the reverse process, xt−1 is calculated
based on xt and x0,t . xt and x0,t are noise image at time step
t and a calculated clear image at the intermediary stage of
the diffusion model, respectively. For the calculation of x0,t ,
we first predict the noise ϵt based on the state xt , the time-step
t , and the cloudy image y

ϵt = ϵ̂θ (xt , t, y). (8)
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After that, as a reverse process of (4), we obtain x0,ϵ,t in the
current step t based on the predicted noise ϵt and the noisy
image xt

x0,ϵ,t = (xt −

√
1 − ᾱtϵt )/

√
ᾱt . (9)

For the pure diffusion model, x0,t is equal to x0,ϵ,t . In our
approach, we utilize a reference visual prior to refine x0,ϵ,t ,
obtaining an improved x0,t . The improved x0,t approaches the
genuine cloud-free image more closely, yielding superior final
outcomes. Specifically, we begin by utilizing the reference
model denoted as E to produce a cloud-removed output
denoted as x0,E

x0,E = E(y). (10)

The output x0,E generated by the reference model serves
as the primary structural foundation of the image, while x0,ϵ,t

predicted by the diffusion model introduces abundant details
and textures. A comprehensive formula for this refinement
process is presented as follows:

x0,t = 0(x0,E , x0,ϵ,t ) (11)

where 0 means the fusion function.
In practice, we utilize a pixelwise linear combination of the

two predictions

x0,t = (1 − W) ⊙ x0,ϵ,t + W ⊙ x0,E (12)

where ⊙ represents the element-wise multiplication, 1 means
the all-one matrix, and W ∈ RC×H×W is a pixel-wise fusion
ratio which will be further described in the next part.

Finally, according to the posterior distribution of diffusion
model [16], we could sample xt−1 ∼ pθ (xt−1|xt ) based on xt

and the refined x0,t from the distribution shown in (6) with
the mean value µθ (xt , t) and variance σθ (xt , t)

µθ (xt , t) =

√
ᾱt−1βt

1 − ᾱt
x0,t +

√
αt (1 − ᾱt−1)

1 − ᾱt
xt , (13)

σθ (xt , t) = β̃
1
2
t (14)

where β̃t = (1 − ᾱt−1/1 − ᾱt )βt .
Combining (6), (13), and (14), the formula of xt−1 is as

follows:

xt−1 =

√
ᾱt−1βt

1 − ᾱt
x0,t +

√
αt (1 − ᾱt−1)

1 − ᾱt
xt + β̃t z, z ∼ N (0, I).

(15)

In Fig. 4, we present an example of x0,t from time step
T to 1 demonstrating the impact of integrating the reference
visual prior. As depicted in the initial line of Fig. 4, the diffu-
sion model, guided by the loss function shown in (7), primarily
concentrates on learning the distribution of the entire image
set rather than the fine pixel-level information. This approach
inspires its ability to generate diverse texture information.
However, the generated textures often lack authenticity failing
to accurately align with the actual scene due to the absence
of direct structure constraints at the pixel level. Notably,
discrepancies are evident in features such as the lake outline
and background texture, which do not align closely with the
ground truth.

Fig. 4. Style of x0,t from denoising time step T to 0. The first line
and second line represent the result of the vanilla diffusion model and our
DE, respectively. The ground truth and cloud-removed image generated by
reference model are presented on the left side.

On the other hand, based on the result of the reference
model illustrated in Fig. 4, the reference model implemented
in an end-to-end manner primarily relies on fidelity-driven loss
functions during training to minimize pixel disparities between
cloud-removed and cloud-free images. Consequently, they can
swiftly reconstruct the accurate underlying structure of cloud-
removed images in a single step. This characteristic renders
them effective for low-resolution datasets with limited texture
information. However, when dealing with higher-resolution
scenes boasting richer textures, the reference model struggles
to capture and replicate those fine-grained details. As a result,
it is challenging to faithfully restore complicated landscapes
beneath the cloud cover.

Considering these pros and cons, our DE introduces the
reference visual prior to the diffusion model. We utilize guid-
ance from an approximately cloud-removed image generated
by a reference model, denoted as x0,E , to steer the denoising
process. x0,E , predicted by the reference model, establishes
the fundamental image structure, while x0,ϵ,t generated by
the diffusion model introduces details and textures. As a
result, the accurate structure produced by the reference model
helps mitigate the generation of fake details by the diffusion
model, while the diffusion model contributes additional texture
information to enhance cloud-removed image reconstruction,
particularly for high-resolution scenes. As depicted in the sec-
ond line of Fig. 4, our DE effectively addresses the limitations
of both the pure diffusion model and the reference model
through the reference visual prior.

C. Dynamic Fusion Among Diffusion Steps

We employ a WA network, which is trained to dynamically
balance the fusion of results from the diffusion model and
reference model throughout the progressive diffusion process
steps. As shown in Fig. 5, the WA takes inputs consisting
of the concatenation of xt , y, and x0,E , with the time step t
guiding the network across all layers. The UNet architecture
of WA is inspired by CNP [40]. Consequently, the training
objective enables the WA dynamically to determine the fusion
ratio W based on the noise strength from time step t and the
image features from xt , y, and x0,E , allowing for temporal and
spatial adaptation.

As shown in the first line of Fig. 4, the images x0,ϵ,t

produced by the diffusion model initially contain a significant
amount of noise. The noise in the image gradually decreases
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Fig. 5. Architecture of WA. WA learns to dynamically determine the
weighting matrix based on the image features and the noise strength.

as the time step approaches one. x0,E closely approximates the
ground truth compared with x0,ϵ,t , especially at the first few
time steps. In order to gain the high-quality x0,t , according
to (12), the fusion ratio should make temporal adaptation by
achieving a high value at first to facilitate the establishment
of precise image structure based on the reference model and
gradually diminish as t decreases to enhance various texture
generation based on the diffusion model. Furthermore, despite
that the image structure x0,E from the reference model is
roughly accurate, it still may contain minor errors. And the
image noise from x0,ϵ,t which has not been totally removed
is randomly distributed across the entire image. Hence, the
fusion ratio is also critical for adaptation in the spatial domain
to detect the noise and errors from the results of both the
diffusion model and reference model.

To tackle these challenges, we obtain the fusion ratio W
from the WA network based on the time step t and the image
restoration result. This enables WA to generate a specific
fusion ratio for each time step t and each pixel, thereby provid-
ing detailed pixel-level weight information for the refinement
process. Moreover, to prevent x0,t from becoming overly
reliant on x0,ϵ,t with a low value of W, which could lead to
unguided generation results, we introduce a limiting factor η

to confine the range of W from η to 1 in the inference process
to ensure the constraint from the reference model to the final
result. Further details regarding the hyperparameter η are pro-
vided in Section V-C1. In summary, the WA network encour-
ages the diffusion model to focus on generating more detailed
texture information based on the image structure provided by
the reference model. Additionally, it still aids in identifying
and rectifying errors originating from the reference model.

D. Coarse-to-Fine Training and Inference

To accelerate the convergence speed of our DE during
the training phase, we implement a coarse-to-fine training
strategy. Initially, the image is resized to 1/4 of its original
dimensions and processed by a sole diffusion model. Through-
out this process, the employed loss function is given in (7).
The fine-tuning process takes place after the diffusion model
reaches near convergence at this smaller scale.

Once the network convergences on smaller images,
we introduce and train the WA network with the full-size
images, leveraging the knowledge from the well-converged

TABLE IV
DETAILED MODEL SETTING OF THE CNP AND WA

diffusion network. The WA achieves initial convergence based
on the locked diffusion model trained on the downscaled
images, laying a foundation for the subsequent joint training
of the diffusion model and the WA. In this context, the
corresponding loss function of the DE is defined as

LWA = |x̃0 − x0,t |

= |x̃0 − (1 − W) ⊙ (x0,ϵ,t )sg + W ⊙ x0,E | (16)

where x̃0 means the real cloud-free image and (·)sg means stop
gradient. Only the gradient of W is calculated while x0,ϵ,t ’s is
disabled.

Ultimately, the CNP and WA are jointly trained using the
full-size images. The loss function for this joint training is
defined as

Ljoint = λ · LDDPM + LWA (17)

where λ is the weight proportion coefficient to balance the
value gap between the two parts of the loss function. The
detailed setting of λ is provided in Section V-B.

Notably, since the training process of the diffusion model
is known to be quite unstable, in (16) and the second segment
of (17), the gradient of x0,ϵ,t remains deactivated to prevent any
adverse effects on the CNP. The CNP consistently maintains
its original training strategy for larger images, while the WA
adapts its approach based on the training outcomes of the CNP.

Throughout the inference process, at each step, the diffusion
model predicts the noise ϵt and computes x0,ϵ,t using (9).
Subsequently, the reference model generates its cloud-removed
output, x0,E , which is then utilized by the WA to determine the
fusion ratio, W. x0,t is calculated through a pixelwise linear
combination of the predictions of x0,E and x0,ϵ,t based on W
produced by the WA. Ultimately, xt−1 is generated and the
denoising cycle concludes when t = 1.

V. EXPERIMENTS

A. Datasets and Metrics

To evaluate the efficiency of our proposed method, we uti-
lize two datasets: RICE [26] and the newly introduced
CUHK-CR, for validation. The RICE dataset comprises
500 images with thin cloud covers and 736 images with thick
cloud covers in RGB channel and sized at 512 × 512 pixels.
The training and test sets are randomly partitioned in an
8:2 ratio. Further details about our CUHK-CR dataset are
provided in Section IV.

We employ three widely recognized metrics for quantita-
tive evaluation of CR performance: peak signal-to-noise ratio
(PSNR), structural similarity (SSIM), and learned perceptual
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TABLE V
QUANTITATIVE EXPERIMENTAL RESULTS ON THE RICE1 AND RICE2 DATASETS. ↑ AND ↓ REPRESENT HIGHER

BETTER AND LOWER BETTER, RESPECTIVELY

TABLE VI
QUANTITATIVE EXPERIMENTAL RESULTS ON THE CUHK-CR1 AND CUHK-CR2 DATASETS. ↑ AND ↓ REPRESENT HIGHER

BETTER AND LOWER BETTER, RESPECTIVELY

image patch similarity (LPIPS) [41]. PSNR evaluates the
generated image by comparing it with the ground truth at
the pixel level. SSIM primarily assesses structural differences,
while LPIPS aligns more closely with human perception.

B. Implementation Details

Our DE is based on the guided diffusion [40]. The hyper-
parameters of the UNet for CNP and the WA are listed in
Table IV.

In DE, the CNP and WA undergo training employing the
L2 and L1 loss, respectively, with a consistent learning rate
of 10−5. We maintain a weight proportion coefficient, λ,
set at 1. To enhance efficiency in inference, we implement
DDIM [42] with 50 steps, and the limiting factor η is set to
0.3 which means that the values of W are confined within
the range of 0.3–1. All images, for both training and testing,
are standardized to dimensions of 256 × 256 pixels. Initially,
CNP is trained by smaller images measuring 64 × 64 pixels,
utilizing a batch size of 64. As the training dataset shifts
to standard-sized 256 × 256 pixel images, the batch size is
adjusted to 16. For our CUHK-CR dataset, we perform model
training and testing using four-band multispectral images. All
experiments are executed using PyTorch on a single NVIDIA
GeForce RTX 4090 GPU equipped with 24 GB of RAM.

C. Performance Comparison

We conduct a comprehensive comparison between our
DE and several state-of-the-art CR networks, including two
CNN-based models, namely MemoryNet [43], CVAE [10],
and three GAN-based models, namely SpAGAN [30],
AMGAN-CR [31], and MSDA-CR [44]. We choose two types
of reference models, MSDA-CR and MemoryNet, to train and
evaluate our DE. To differentiate between the DE variants
trained on these models, we label them as DE-MSDA and

DE-MemoryNet, respectively. To ensure a fair evaluation, all
of these methods are thoroughly optimized using our training
and test datasets to achieve their peak performance.

The quantitative results of these experiments on the RICE
and CUHK-CR datasets are presented in Tables V and VI,
respectively. Since the visual differences of the thin clouds
are not readily discernible, we have chosen to display visual
comparisons solely for thick cloud datasets at Figs. 6 and 7.

1) RICE: As indicated in Table V, our method demonstrates
a substantial improvement compared to its corresponding
reference model. Notably, our DE-MSDA and DE-MemoryNet
achieve superior performance among these end-to-end models.
For MSDA-CR, which achieves the best results on both
RICE datasets, our DE-MSDA exhibits an improvement of
0.8 dB and 0.001, 0.4 dB, and 0.01 in PSNR and LPIPS
for RICE1 and RICE2, respectively. These gains in PSNR
and LPIPS indicate that our results not only achieve accurate
landscape predictions but also align with human perception.
Our diffusion-based approach significantly enhances the gener-
ation of fine textures, closely matching the ground truth, within
the framework provided by the corresponding reference visual
prior. The enhancements on LPIPS are especially obvious in
the context of RICE2, where the dense cloud cover raises
a hard challenge for cloud-removed image reconstruction.
This scenario demands a heightened capacity for generating
complicated and visually authentic textural details, given the
considerable amount of obscured texture concealed by the
clouds. Consequently, the model’s capability to predict and
generate textures is highlighted in such conditions. Though
the end-to-end models such as MemoryNet and MSDA-CR
also gain promising results, our DE could make additional
improvements based on them.

Visual results are presented in Fig. 6. SpAGAN and
AMGAN-CR exhibit obvious shortcomings in image style and
color. Despite the superior results achieved by MSDA-CR
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Fig. 6. Visual comparisons on RICE. (a) Label. (b) Cloudy image. (c) SpAGAN. (d) AMGAN-CR. (e) CVAE. (f) MemoryNet. (g) DE-MemoryNet.
(h) MSDA-CR. (i) DE-MSDA.

and MemoryNet, there are still some errors present, including
residual noise and cloud cover. Additionally, these models
make relatively few predictions regarding texture information.
In contrast, our DE is capable of error correction and accu-
rate detailed predictions. For instance, our DE-MSDA and
DE-MemoryNet exhibit enhanced reconstruction of the lake
outline in the second image compared to MemoryNet and
MSDA-CR.

2) CUHK-CR: The restored results of our CUHK-CR
dataset are generally less satisfactory compared to RICE. The
highest PSNR achieved by the end-to-end model in the RICE
dataset surpasses 30 dB, but it decreases to 26 and 24 dB in
the CUHK-CR1 and CUHK-CR2 datasets, respectively. The
results signify that our ultra-resolution dataset presents greater
challenges. Despite the increased difficulty, our DE-MSDA
still yields superior results, achieving nearly a 0.3 dB PSNR
improvement in both CUHK-CR1 and CUHK-CR2. On the
CUHK-CR dataset, the limitations of certain models like
SpAGAN and AMGAN-CR become more conspicuous when
confronted with such ultra-resolution images, underscoring
their unsuitability for high-resolution CR tasks in the realm
of RS. They exhibit limited effectiveness in removing clouds,

with an improvement of less than 1 dB improvement over the
cloudy image.

Visual results for CUHK-CR are provided in Fig. 7.
SpAGAN and AMGAN-CR struggle with such high-resolution
CR tasks, particularly in the presence of thick clouds. In the
case of CVAE and MemoryNet, despite a reasonable outline,
it struggles with severe color deviations. Our DE primarily
introduces subtle texture changes and correct color when com-
pared to their corresponding reference models. For instance,
the color of the roof in the output of DE-MSDA more closely
resembles the ground truth than that of MSDA-CR. Fur-
thermore, the results after our enhancement DE-MemoryNet
appear clearer and more accurate, in contrast to the rather
blurry outputs of MemoryNet, especially in areas obscured by
dense clouds.

D. WA Analysis

1) Spatial Adaptation: In Fig. 8, we present an example
of the attention heat map that depicts the behavior of the
WA. Notably, the reference model falls short of completely
removing the cloud cover, as indicated by the highlighted
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Fig. 7. Visual comparisons on CUHK-CR. The first line and second line present the RGB images and near-infrared images, respectively. (a) Label. (b) Cloudy
image. (c) SpAGAN. (d) AMGAN-CR. (e) CVAE. (f) MemoryNet. (g) DE-MemoryNet. (h) MSDA-CR. (i) DE-MSDA.

Fig. 8. Example presents the attention heatmap of W. As the value
approaches 1, its reliance on x0,E becomes more pronounced. Conversely,
as it nears 0, it exhibits a stronger dependence on x0,ϵ,t . (a) Label. (b) x0,ϵ,t .
(c) x0,E . (d) Heatmap of W.

area within the red box. As depicted in Fig. 8(d), our WA
diligently addresses this discrepancy by reducing the weight
allocated to this specific area. Moving to the domain of x0,ϵ,t ,
we observe that some regions still retain residual noise that has
not been eliminated. In response, the value of W is notably
higher in these challenging areas, denoting slight adjustments
that correspond to the noise distribution. This attention heat
map serves as a compelling visual representation of the WA’s
capacity to dynamically fine-tune the strength of the reference

visual prior in the spatial domain. The results demonstrate
that this fine-tuning process could generate superior x0,t based
on the assessment of the quality of both x0,E and x0,ϵ,t . The
refined x0,E is closer to the ground truth, consequently leading
to better final cloud-removed results.

2) Temporal Adaptation: The change of the mean value
of W over each time step is visually represented in Fig. 9.
Initially, the mean value of W is relatively high and gradually
decreases as the time step decreases, approaching nearly 0 in
the later stages. This trend indicates that, at the outset, x0,t

primarily relies on the guidance provided by x0,E , while the
influence of x0,ϵ,t becomes more prominent as the time step
approaches 0.

The fluctuation in the mean value of W reveals the under-
lying assumption that reference visual prior establishes the
groundwork for the overall structure of x0,t in the first few
denoising steps, outlining the likely shapes of the images.
Subsequently, the diffusion architecture intervenes, making
fine adjustments by introducing additional texture information
and correcting errors based on the guidance. This dynamic
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Fig. 9. Mean value generated by the WA in each time step on RICE2 with
reference model MSDA-CR.

Fig. 10. Schematic representation of the adjustment of the limiting factor η.
The red box means the limited value range of W.

Fig. 11. Experimental comparisons on RICE with different limiting factors
η on W.

shift in the mean value of W underscores the collabora-
tive relationship between the reference visual prior and the
diffusion architecture, leading to a leap in reconstruction
performance.

3) Parameter Analysis: Our investigation delves into the
impact of the limiting factor η on W. The schematic repre-
sentation of η adjustment is illustrated in Fig. 10. It means that
each value in W is limited at the range of η–1. In the training
process, we set η to 0, thereby effectively allowing W to range
from 0 to 1 without any constraints. The WA network flexibly
learns the balance between x0,ϵ,t and x0,E . In the inference
process, with low values of W, x0,t becomes overwhelmingly
dependent on x0,ϵ,t . In this scenario, x0,t may incorporate a
substantial amount of inaccurate information from x0,ϵ,t . To
address this concern, we set the limiting factor η to a value
more than 0 to restrict the range of values for W. In theory, η

serves to control the maximum influence that x0,ϵ,t can exert
based on the reference visual prior refinement. Our evaluation
of various η values, including {0.1, 0.3, 0.5, 0.7, 0.9}, reveal
interesting insights. We note that our DE achieves the highest

TABLE VII
RESULT OF MEMORYNET TRAINED WITH THE DIFFERENT RESOLUTION

IMAGES. TRAINING AND TESTING REPRESENT THE SPATIAL RESOLU-
TION OF IMAGES FOR TRAINING AND TESTING

TABLE VIII
VERTICAL ABLATION STUDY ON THE RICE2 WITH MSDA-CR

PSNR when η is set to 0.1, while the SSIM is maximized
when η is set to 0.3, as illustrated in Fig. 11. In summary, our
DE appears to yield the most favorable results when η is set
to 0.3, achieving the performance balance between structural
detail and global contour preservation. This optimized setting
of η ensures that both x0,E and x0,ϵ,t contribute effectively to
the cloud-removed image generation process.

E. Gap Between the High-Resolution and Low-Resolution
Datasets

We perform extra experiments to demonstrate the significant
influence of differences in data resolution on the model’s
performance. Essentially, models trained with low-resolution
images yield less favorable results when tested on high-
resolution datasets. This emphasizes the necessity for an
ultra-resolution CR dataset.

Our approach initiates by training the model with images
of various resolutions in the same size, followed by eval-
uating its performance on high-resolution sets. Specifically,
we resize our 512 × 512 images from 0.5 m to different
spatial resolution, such as {1m, 2m} and crop all of them
as 128 × 128 to train the model. Following the training
phase, we utilize corresponding crop sizes 128 × 128 from the
original and resized images with 0.5 and 1 m spatial resolution
to assess the impact of resolution on the ultimate CR results.
As depicted in Table VII, all metrics show degradation as
the training image resolution decreases. When comparing the
performance between the training spatial resolution of 1 and
2 m on 0.5 m test set, we observe a decrease of 1.2 dB in
PSNR, 0.06 in SSIM, and 0.008 in LPIPS. These experimental
findings underscore the importance of our efforts to construct
an ultra-resolution CUHK-CR dataset.

F. Ablation Study

Table VIII illustrates the results of an ablation study that
explores the impact of the coarse-to-fine training strategy, WA,
and reference visual prior. The results are presented in the
order of training steps, with all outcomes evaluated using the
same test set comprising images of size 256 × 256. No. 1
represents the outcome of training the diffusion model solely
with small images of 64 × 64, while No. 2 denotes the
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TABLE IX
HORIZONTAL ABLATION STUDY ON THE RICE2 WITH MSDA-CR

results based on the pretrained model from No. 1, which is
further trained with regular-sized images of 256 × 256 on
WA. No. 3 is the final result, where the WA and the diffusion
model are jointly fine-tuned with regular-sized images based
on the weight from No. 2. In comparison to No. 1 and No. 2,
the inclusion of WA and reference visual prior refinement
results in a remarkable improvement of nearly 2.1 dB, 0.034,
and 0.005 in terms of PSNR, SSIM, and LPIPS, respectively.
The fine-tuning process on regular-sized images has a lesser
impact on PSNR and LPIPS but contributes more significantly
to SSIM with a 0.005 improvement. These experimental results
emphasize the advantageous role of coarse-to-fine training
strategy, WA, and reference visual prior in the training order.

In the previous paragraph, we illustrated the improvements
achieved through our three-stage experimental process. Here,
we conduct a horizontal comparison by presenting results
without the reference visual prior, coarse-to-fine training strat-
egy and the WA in Table IX. In the first row, the result refers to
the pure diffusion model trained on normal-sized images and
evaluated without the reference visual prior. In the second row,
the reference visual prior is incorporated into the pure diffu-
sion model. In the third row, the coarse-to-fine training strategy
is introduced. The fourth row presents outcomes from models
with WA trained solely with normal-sized images, excluding
the coarse-to-fine training strategy. All the experiments with
the reference visual prior but without WA replace WA with
a simple linear combination using a fixed parameter of 0.5.
In other words, both x0,ϵ,t and x0,E each contributes half to
x0,t at any time step. As indicated in Table IX, comparing
the first and second rows, the incorporation of the reference
visual prior leads to improvements of about 0.6 dB, 0.015, and
0.002 in PSNR, SSIM, and LPIPS, respectively. Moreover, the
similarity in results between the second and third, fourth and
fifth rows demonstrates that the coarse-to-fine training strategy
effectively reduces computational costs without precision loss.
Finally, when comparing the third and fifth rows, the addition
of the WA results in an enhancement of nearly 0.4 dB in
PSNR. This horizontal comparison objectively highlights the
advantages of the reference visual prior, WA, and the coarse-
to-fine training strategy.

G. Computational Complexity Analysis

We conduct a thorough comparison of the computa-
tional complexity among the models, in terms of model
complexity, memory usage, parameter count, and process-
ing speed. The specific details are presented in Table X.
The results demonstrate that our model achieves supe-
rior results without significantly increasing computational
complexity.

TABLE X
COMPUTATIONAL COMPLEXITY OF THE COMPARED METHODS

VI. CONCLUSION

In this article, the DE method is introduced for recon-
structing cloud-removed images. DE incorporates the diffusion
architecture under the basis guidance of an reference visual
prior, aiming to capture the merits of progressive diffusion
process and end-to-end network to achieve both fine-grained
detailed reconstruction and excellent global context modeling.
To adaptively fuse the information from both branches, a WA
network is trained to make balance based on their outputs
across the whole denoising steps. Additionally, a coarse-to-
fine training strategy is employed to accelerate convergence
while obtaining superior results within a limited number of
iterations. Finally, we introduce an ultra-resolution bench-
mark that provides a new basis with well-defined spatial
landscape textures to train and evaluate the performance of
CR models. Our experimental results on both the RICE and
our CUHK-CR datasets demonstrate its superior performance.
For future works, various conditions, such as feature maps
of cloudy images and semantic information, may substitute
the cloudy image to offer improved guidance for constructing
more effective diffusion models.
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